初中名师直播课堂 初三期中考试要点复习(数学、化学篇)
数学课主讲教师:北京师范大学蚌埠附属学校耿晓楠化学课主讲教师:蚌埠第六中学李渊相似三角形专题复习□耿晓楠
教学目标1.学生在原有知识和经验的基础上,进一步丰富对几何图形的认识和感受,掌握通过实例探索数学结论的方法,建构“用相似三角形解决问题”的基本数学模型;初步形成从特殊到一般的思维方式,发展合情推理.2.培养学生从图形相似的角度分析现实问题、提出有关的数学问题并加以适当解决的自觉意识和能力.积累有关数学活动经验,使学生理解图形相似的数学内涵,发展思维能力.3.在思考、分析和解决问题的过程中,认识数学严谨、抽象和应用广泛的特点,体会数学的应用价值.
教学重点梳理相似三角形判定和性质的有关知识,构建数学模型;会用“一线三等角”的基本图形解决相似中的相关问题.
教学难点运用相似型的基本图形解决问题;“一线三等角”的基本图形的提炼、变式和运用.
教学过程
活动1相似变换的图形变式
一、A字型
问题1:如图,已知D、E分别是ABC的边AB、AC上的点,请你添加一个条件,使得△ADE与△ABC相似.(A字型)
二、X字型
问题2:如果我们平移直线DE,与ABC的两边BA、CA的延长线分别相交D、E,又会产生什么样的相似图形呢?(X型)
模型运用:
1.(2019年安徽省期中测试)如图,在平行四边形ABCD中,R为BC延长线上的点,连接AR交BD于点P,若CR:AD=2:3,则AP:PR的值为(A)A.3:5B.2:3C.3:4D.3:2
三、母子相似型
问题3:现在,我们斜A型图进行“特殊化”处理,将DE向下平移,使点E与点C重合,那么就可得到“母子相似”图形.继续“特殊化”处理:当∠ACB=∠CDB=90°时,得到双垂直图.
模型运用:
2.(2019年安徽省期中测试)如图,在矩形ABCD中,作DE垂直于BD,交BC的延长线于点E,求证:AB2=BC·CE.
活动2一线三等角模型
四、一线三等角模型
抽象模型,揭示实质:
一线三等角,两头对应好,互补导等角,相似轻易找
模型运用:
4.如图,等边△ABC的边长为3,点D是BC上一点,且BD=1,在AC上取点E,使∠ADE=60°,AE长为(C)
A.3/2B.2/3C.7/3D.3/4
5.如图,已知AB垂直于BD,CD垂直于BD,若AB=6,CD=4,BD=14,点P为线段BD上一动点,若以P、A、B三点为顶点的三角形与以P、C、D三点为顶点的三角形相似,求BP的长.
典例分析,综合运用:
中点与一线三等角模型
例1:如图,已知正方形ABCD中,AB=4,E是边BC上的点(不与点B点C重合),连接AE,过点E作EF垂直于AE,交直线CD于点F□设线段BE的长为x,线段CF的长为y.
(1)求y关于x的函数解析式;
(2)当x取何值时,y取得最大值?
(3)当E为BC中点时,还有其它三角形相似吗?
拓展提升:
(2019年安徽省期中测试)如图,在矩形ABCD中,E为边AD上一点,且BE=BC,作∠EBC的平分线交CD于点G,F为BC上一点,H为CG上一点,且EF垂直于BH.
(1)求证:GE=GC
(2)求证:△ABE相似于△DEG
(3)若BC=10,CG=5,求EF/BH的值
九年级化学上册知识清单□李渊
第一单元
第二单元
实验再现
空气中氧气含量的测定
(1)实验装置(如图):
(2)实验原理:红磷在空气中燃烧,将瓶内氧气消耗掉,生成白色固体五氧化二磷,使容器内压强减小,在大气压作用下,进入容器内水的体积即为减少的氧气的体积。
(3)实验步骤:①连接装置并检查装置的气密性;②在集气瓶内加少量水,并做上记号,将剩余部分分成五等份;③用弹簧夹夹紧胶皮管,点燃燃烧匙内的红磷,迅速伸入集气瓶中,立即塞紧橡胶塞;④待红磷熄灭并冷却至室温后,打开弹簧夹。
(4)实验结论:氧气约占空气体积的1/5。
(5)误差分析:
操作原因
红磷要足量若红磷不足,氧气不能耗尽,导致进入瓶中的水的体积偏小,测量结果偏低
装置不能漏气装置漏气会使装置外的空气进入,导致进入瓶中的水的体积偏小,测量结果偏低
点燃红磷后要立即伸入集气瓶,并塞紧塞子伸入过慢会使装置内的气体受热逸出,导致进入瓶中的水的体积偏大,测量结果偏高
待集气瓶冷却到室温后再打开弹簧夹过早打开弹簧夹会使装置内气体温度偏高,压强偏大,导致进入瓶中的水的体积偏小,测量结果偏低
可预先在集气瓶中加少量水可以使装置快速冷却,一是缩短实验时间,二是防止瓶内气压骤然升高将瓶塞膨出;防止高温熔化物炸裂瓶底
第三单元
第四单元
新闻推荐
两台大吊车将列车吊上云轨。本报讯(记者陈昂文/图)备受市民关注的淮上区云轨建设,目前有了最新进展,10月29...
蚌埠新闻,弘扬社会正气。除了新闻,我们还传播幸福和美好!因为热爱所以付出,光阴流水,不变的是蚌埠这个家。