舆情监测从信息检索走向内容识别
伴随着自媒体、移动端的快速发展,在不到10年的时间里,每日舆情数据总量从百万级扩展到千万级,当前已经达到亿级。如此庞大的舆情信息,远远超过正常阅读的极限,要对海量的信息进行分析,势必要使用人工智能技术对舆情信息进行处理和研判。
AI舆情系统优势愈发突显
AI舆情系统是指以人工智能技术进行中文全媒体资讯自动化分析与大数据情报挖掘的综合系统。与传统舆情系统相比,其有两个明显的转变:舆情监测从“检索”到“算法”的转变;数据计算从“简单计算”到“深度学习”的转变。AI舆情系统的优势在于可以精确地对文本类信息进行实体识别、语义消歧、知识图谱构建、话题分类、自动摘要、情感分析,并对于图像类的信息进行有效的品牌识别、人脸识别、物体识别和文字识别等。
随着大数据、云计算、人工智能技术的发展与用户量的日益增长,舆情智能化发展亟待解决两个需求:以移动化应用为代表的“浅舆情”需求以及需要深度分析的“潜舆情”需求。而无论是“浅舆情”还是“潜舆情”都需要一个强大的舆情数据处理平台。
首先,AI舆情系统提升了数据的精准性。早期的舆情监测,通常由“关键词”搭配“与、或、非”的判断逻辑进行数据检索,往往需要辅以大量的人工,对数据进行二次处理。而智能化的监测,则通过自然语言处理技术对内容进行多维度识别,从而提升数据的准确性。基于自然语言处理技术,AI舆情系统运用垃圾分类模型提升数据精准度,并通过情感分析技术获取敏感信息,实时表现舆论状态,评估舆论走向。
在此基础上,系统还能通过事理图谱、热点聚类、文本分类等学习方法,对舆情事件的发展脉络、特征分布、风险等级进行自动阶段性总结,并给出趋势预测。
其次,AI舆情监测的优势,还体现在对“非确定”信息的监测上。长期以来,舆情监测一直存在一个难题,即对一个部门、企业、话题、事件等确定性的“主题监测”相对容易,但对一些“无主题”的监测,则困难得多。
从“网络问政”到“网络理政”
AI舆情系统提升了信息概括总结的能力,舆情作为重要的社会评价数据,在跟其他维度的数据进行融合之后,再次扩展了应用场景和使用价值。很多政府机构将舆情数据视为社会治理数据的重要组成部分;企业则常将舆情数据作为大数据风控和智慧营销的重要参考指标。显然,AI舆情系统推动了“网络问政”向“网络理政”的转变。
随着近些年数据风控应用越来越广泛,在治理个人征信数据滥用乱象之后,很多金融企业将舆情数据作为重要的风险指标,希望利用舆情数据进行风险识别、风险估测和风险评价等。
AI舆情系统不仅能够将已有风险归纳为经验知识,还可以利用人工智能技术和知识图谱功能,将某一种经验扩充为某一类经验,以此来实现对未来风险的精准预测。此外,AI舆情系统的知识图谱功能,具有推理计算的能力,可以发现以往并未存在但将来可能存在的风险,满足用户的深层需求。
在传统媒体时代,一篇新闻稿件发布的同时,意味着工作即结束。而在融媒体时代,稿件的发布仅仅是稿件传播的开始。通过对稿件内容的分析,可以更加精准地分析出稿件更适合在什么时间发布、更容易在什么平台上传播、更适合用哪种表现形式。而这一切,很可能是基于舆情数据对当前新闻舆论的精准分析。
(华凌)
新闻推荐
本报讯(记者梁敏华通讯员张晓艳)近日,在兴业石南某酒吧,两名男子酒后发生纠纷厮打,派出所民警接警后迅速介入调查,最终两名男子...